skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Orailoglu, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. While Volatile Organic Compounds (VOC) and ammonia have a place in our daily lives, their leakage into the environment is harmful to human health. In order to prevent and detect gaseous leaks of harmful VOCs, a cyber-physical system (CPS) comprised of ordinary people or first responders is proposed. This CPS uses small, low-cost sensors coupled to smart phones or mobile devices with the necessary computation and communication capabilities. The efficacy of such a CPS hinges on its ability to address technical challenges stemming from the fact that identically produced sensors may produce different results under the same conditions due to sensor drift, noise, or resolution errors. The proposed system makes use of time-varying signals produced by sensors to detect gas leaks. Sensors sample the gas vapor level in a continuous manner and time-varying sensor data is processed using deep neural networks. One of the neural networks (NN) is an energy efficient Additive Neural Network (AddNet) which can be implemented in host devices. The second NN is the discriminator of a GAN and the third a regular convolutional NN. AddNet produces comparable VOC gas leak detection results to regular convolutional networks while reducing area requirements by two thirds. 
    more » « less